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Abstract
The shape of the Fermi surface of organic metals can be measured by recording
angle-dependent magnetoresistance oscillations. We review this technique and
develop a model for parametrizing the shape of the quasi-two-dimensional
Fermi surface sections which often appear in organic metals. Using this
model, we show that it is possible to extract more detail about the quasi-two-
dimensional pocket shape from angle-dependent magnetoresistance oscillations
than in the traditional approximation which assumes an elliptical Fermi surface
shape. We also consider the implications for cyclotron resonance experiments.

1. Introduction

Organic compounds are generally insulating because they contain few charged species and
exhibit poor intermolecular overlaps. Nevertheless many high-quality organic metals with
well-defined Fermi surfaces, and even a large number of superconductors, have been discovered
[1]. These organic conductors are surprisingly well-defined ‘test-bed’ materials which can be
used in experiments which study superconductivity in correlated systems. A key experimental
aim is to measure the dimensions and shape of the Fermi surface (FS). Measurements of
magnetoresistance (MR) have been found to be extremely useful in this regard for conventional
metals [2, 3]. The presence of open and closed orbits can be easily distinguished by the field
dependence of the MR while the area of the FS pockets can be measured by the frequency of
Shubnikov–de Haas (SdH) oscillations which is proportional to the area of an extremal orbit on
the FS [3]. Such techniques are now routinely applied to organic metals [1]. The orbits which
are not extremal do not contribute to this oscillatory signal but give rise to a non-oscillatory
background MR. However, this background MR can depend quite dramatically on the direction
of the applied magnetic field, and in some cases very large angle-dependent magnetoresistance
oscillations (AMROs) at constant field can be found.

Experimentally, AMROs are measured by rotating a sample in a fixed magnetic field
while monitoring the resistivity of the sample [4]. AMROs can be observed at much higher
1 Present address: Department of Physics, Princeton University, Princeton, NJ 08544, USA.
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temperatures and in much lower applied fields than SdH oscillations. This is because SdH
oscillations arise from the movement of Landau levels through the Fermi energy (EF) and
therefore require that the temperature is low enough for the FS to be sharply defined; this
restriction does not apply so stringently to AMROs since they do not originate from the motion
of energy levels through the FS. The information obtained from AMROs can therefore be
complementary to SdH oscillations since the effect is due to all electrons on the FS, not
just those performing extremal orbits [5]. In the case for which the quality of a sample
of an organic metal is too poor to allow the measurement of SdH oscillations, AMROs can
nevertheless be measured and thus allow information about FS shapes to be obtained [6]. In this
paper we demonstrate how measurements of AMROs can lead to a determination of FS shape
(section 2) and present a method of parametrizing the shape of FS pockets (section 3) which
can be applied to an organic metal. We also consider implications for cyclotron resonance
experiments (section 4).

2. Open and closed orbits and AMROs

In order to calculate galvanomagnetic effects in a metal, a necessary preliminary is to
understand which electron orbits are possible across the FS for a given orientation of the
magnetic field. Then, the conductivity σij can be calculated using the Boltzmann transport
equation:

σij = e2

4π3

∫
d3k

[
−∂f0(k)

∂E(k)

]
vi(k, 0)

∫ 0

−∞
vj (k, t)e

t/τ dt. (1)

It has been found that weakly incoherent transport theories also predict very similar AMROs,
so a three-dimensional FS is not necessary to explain this effect [7,8]. Nevertheless the use of
the Boltzmann transport equation greatly simplifies the discussion and is more straightforward
to calculate. Equation (1) is an integral (over all states at the FS) of the velocity–velocity
correlation function for each FS orbit. This can change dramatically as the direction of the
magnetic field is changed, because this alters the paths of all the FS orbits. It can be particularly
sensitive to whether the orbits are open or closed, so these two cases may be distinguished by
differing MR behaviour. They will be considered in turn below.

2.1. Open orbits

Open orbits are usually obtained by electron motion along corrugated sheets in the FS. In this
case the AMROs are connected with the fact that for any Fourier component of corrugation,
the velocity is more effectively averaged when electrons are not travelling along the axis of
the corrugation than when they are; sharp resistance minima are obtained when the orbits run
along a Fourier component of the corrugation [9, 10]. Thus the geometry of the Fermi sheet,
parametrized by the Fourier components tmn of the corrugation, entirely controls the AMROs.
In fact it seems that quasi-1D Fermi sheets in organic materials are almost always insufficiently
corrugated to give strong AMRO features. This is because the Fourier components are related
to transfer integrals and these fall off very quickly with distance as one goes beyond the
nearest-neighbour level [10–12]. Nevertheless such AMROs can be observed if the FS is
highly corrugated. This can occur if, for example, it is a reconstructed FS obtained by nesting
(i.e. cutting and pasting together) quasi-two-dimensional pieces of FS. This is believed to be
the case in α-(BEDT-TTF)2KHg(SCN)4 [13, 14].

If an organic material has only a weakly warped Fermi sheet without high-order transfer
integrals (as in the case of the TMTSF salts), AMROs are only expected to be observed if
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the magnetic field is rotated close to the direction perpendicular to the sheets (i.e. close to the
highly conducting direction). In this case oscillations may be observed which are associated
with open orbits which weave between islands of closed orbits around the local maxima and
minima (around the local hillocks and valleys on the sheets) (reference [15]; see also [10,16]).
These oscillations have been experimentally observed in (TMTSF)2ClO4 by Danner, Kang and
Chaikin by rotating the magnetic field close to the a-axis [15]. An additional effect (known
as the third angular effect) is expected when the field is rotated in the most conducting plane
and also originates from the vanishing of closed orbits on the FS sheets [17, 18].

2.2. Closed orbits

Consider now the AMROs due to a warped cylindrical FS pocket lying along the kz-direction.
This situation applies to many salts based upon the organic molecule BEDT-TTF [1]. The
electron dispersion can in this case be written as

E(k) = E(k‖)− 2t cos(kzd) (2)

where k‖ = (kx, ky) and kz are respectively the components of the wave vector parallel
and perpendicular to the conducting planes. If the magnetic field is perpendicular to the
planes, both neck and belly orbits will occur around the FS. It was realized by Yamaji that
at certain inclination angles of the magnetic field (for the case E(k‖) = (h̄2/2m)(k2

x + k2
y)

this is given by kFd tan θ = π(n − 1/4), where n is an integer) all orbits will have identical
area S which he argued could produce AMRO peaks because the SdH-oscillation amplitude
would be largest at these angles [19]. This explained the AMROs which had been previously
observed in β-ET2IBr2 [20, 21] and θ -ET2I3 [22]. However, since the effect is seen at higher
temperatures than SdH oscillations, the concept of constant cross-sectional area maximizing
the SdH-oscillation amplitude is not primarily relevant. Rather one can use the Boltzmann
equation (equation (1)) to calculate the conductivity for all orbits around the FS for arbitrary
field orientation [4,23]. The equivalence of the two approaches was shown in [4]: the average
velocity perpendicular to the 2D layers is proportional to ∂S/∂Kz (where Kz labels the kz-
position of the centre of the orbit) and thus vanishes when S is not a function ofKz. In this way
one can show that Yamaji’s result is nevertheless correct and the AMRO peaks are connected
with the vanishing of the electronic group velocity perpendicular to the 2D layers. The angles
θn at which the maxima occur are given by kmax‖ d tan(θn) = π(n ± 1/4) + A(φ), where the
signs − and + correspond to positive and negative θn respectively, d is the effective interplane
spacing, kmax‖ is the maximum Fermi wave-vector projection on the plane of rotation of the
field, and n = ±1,±2, . . . [4]. Here positive n correspond to θn > 0 and negative n to
θn < 0 [4]. The gradient of a plot of tan θn against n may thus be used to find one of the
dimensions of the FS and, if the process is repeated for several planes of rotation of the field,
the complete FS may be mapped out. A(φ) is determined by the inclination of the plane of
warping; hence this may also be found [4].

This approach has been used to study many organic metals, including the organic
superconductor κ-(BEDT-TTF)2Cu(SCN)2 which has both quasi-one-dimensional and quasi-
two-dimensional sections of FS [24]. It has also been calculated for the superconductor
Tl2Ba2CuO6 [25]. In these experiments, the shapes of quasi-2D FS pockets can be deduced
by AMRO measurements. For each azimuthal angle, φ, one performs a caliper measurement
of the FS. (See figure 1.) The conventional way to do this is to assume an elliptical FS pocket
given by ∣∣∣∣kxka

∣∣∣∣
2

+

∣∣∣∣kykb
∣∣∣∣
2

= 1 (3)
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max

Figure 1. Caliper measurement of the Fermi surface.

where ka and kb are the lengths of the principal axes of the ellipse (which is assumed to be in
the a–b plane). Hence the caliper measurement yields [26]

kmax‖ = [k2
a cos2 φ + k2

b sin2 φ]1/2. (4)

These techniques have mainly been applied to extract the parameters of pockets that
are assumed to be elliptical. However, band-structure calculations often predict non-elliptical
pocket shapes; it is instructive to consider the effect of non-ellipticity on the AMROs generated
by a more general Q2D Fermi surface, and this will be presented in the following section.

3. Quasielliptical pockets

A generalization of the elliptical FS pocket shape which interpolates between an elliptical and
rectangular shape is motivated by a geometrical construct known as a ‘superellipse’ proposed
by Piet Hein [27] which involves an additional parameter n. We therefore consider the case of
a pocket whose shape is given by the equation∣∣∣∣kxka

∣∣∣∣
n

+

∣∣∣∣kykb
∣∣∣∣
n

= 1. (5)

When n = 2 the pocket is elliptical, but for other values of the exponent n it may take on other
shapes. If n � 1 the pocket is concave. The shapes given by alternative choices of n are shown
in figure 2. The area of the pocket is given by

S = 4
∫ ka

0
ky dkx (6)

= 4kb

∫ ka

0

[
1 −

(
kx

ka

)1/n
]

dkx (7)

= 4kakb
n

%(1/n)%(1/n + 1)

%(2/n + 1)
(8)

which reduces to πkakb in the case of n = 2. When n = 1 the FS pocket is a diamond shape
and the area is then 2kakb. The area as a function of n is plotted in figure 3.
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Figure 2. Pocket shapes given by |kx/ka |n + |ky/kb|n = 1 for different values of n. When n < 1
the superellipses are concave; when n = 1 the superellipse is diamond shaped. When n = 2 an
ellipse is obtained. As n → ∞ the superellipse develops rounded corners and gradually fills out
into a rectangle.

Figure 3. The area of the pocket as a function of n.

A caliper measurement of the FS pocket can be used to measure the area in the case when
n � 1. If n < 1 then the caliper measurement will provide a result as if n = 1 because the
FS is concave. We find that the caliper measurement provides a measure of the FS diameter
given by

kmax‖ = sin φ + cosφ[(ka/kb)n cot φ]1/(n−1)

([ka cot φ/knb ]n/(n−1) + k−n
b )1/n

(9)

which reduces to equation (4) for the case in which n = 2.
A further degree of freedom in the shape of the FS pocket can be obtained by introducing

a shearing parameter ξ . In this case, the FS pocket can be of the form∣∣∣∣kxka
∣∣∣∣
n

+

∣∣∣∣ky + ξkx

kb

∣∣∣∣
n

= 1. (10)
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This results in a more complicated expression for the angular dependence of k‖. This can be
fitted to real data with ka , kb, n and ξ as fitting parameters.

We have applied the model to the analysis of the AMROs in the organic superconductor
β ′′-(BEDT-TTF)2SF5CH2CF2SO3. This is one of only a few purely organic superconductors
(Tc ∼ 5.2 K) [28,29] with a large anion which contains no solvent molecules. In the β ′′-phase
structure, the BEDT-TTF molecules are nearly parallel to each other and are separated by
the anion layer. The electronic properties of β ′′-(BEDT-TTF)2SF5CH2CF2SO3 are not very
well known. According to band-structure calculations [29], its Fermi surface (FS) contains a
pair of quasi-one-dimensional Fermi sheets and a Fermi pocket corresponding to a quantum-
oscillation frequency of 600 T, or about 25% of the first Brillouin zone. However, SdH
oscillations [30–32], AMROs [30, 33] and cyclotron resonance (CR) [33] suggest a smaller
pocket corresponding to a frequency of around 200 T.

Figure 4(a) shows AMRO data obtained on this salt at 10 T and a temperature of 1.5 K.
The data show a striking dependence on the orientation of the magnetic field. The tan θ
periodicity of each trace is used to obtain a ‘caliper’ measurement of kmax‖ , and figure 4(b)
shows the FS pocket geometry resulting from fits to equation (9) for the case when n is a free
parameter (solid line; the fit gives n = 1.1). The fitted FS has ka = 2.26 × 109 m−1 and
kb = 0.39 × 109 m−1, giving an area corresponding to a quantum-oscillation frequency of
196 T, in excellent agreement with the Shubnikov–de Haas oscillation frequency of 198 ± 1 T
obtained in the same experimental run. This is rather superior to the fit obtained when
n = 2 [30].

30 15090
(b)(a) θ (degrees)

R
es

is
ta

nc
e 

(a
.u

.)

Figure 4. (a) AMRO data for β ′′-(BEDT-TTF)2SF5CH2CF2SO3 at 10 T and 1.5 K for φ-angles
7 ± 1◦ (top trace), 17 ± 1◦, 27 ± 1◦, . . . , 177 ± 1◦ (bottom trace); adjacent traces are spaced by
10 ± 1◦. Here φ = 0 corresponds to rotation in the a∗c∗-plane of the crystal. The resistance
was measured using a low-frequency ac current of 5 µA applied in the interplane direction; in this
geometry, the measured resistance is proportional to the interplane resistivity component ρzz [1].
(b) The φ-dependence of kmax‖ deduced from the tan θ periodicity of the AMRO in (a) (points); the
‘figure of eight’ solid curve is a fit. The resulting fitted Fermi surface pocket (elongated diamond
shape; n = 1.1) is shown within. The long axis of the pocket makes an angle of 144 ± 3◦ with the
a∗-axis.
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4. Cyclotron resonance

So far we have only considered the dc conductivity due to velocity–velocity correlations along
orbits around the FS. However, the real-space velocity associated with a quasi-two-dimensional
orbit is a periodic function because the orbit is periodic. Hence each component of the velocity
can be expressed as a Fourier series [35]:

vx(t) =
∞∑
m=1

vm cos(mωct + φm). (11)

The time evolution of the real-space velocity is reflected in the bulk high-frequency conductivity
through Chambers’ formula [35–37]. Each harmonic in the real-space velocity generates a
cyclotron resonance (CR) in the conductivity; each non-zero vm in equation (11) causes a CR
in σxx(ω) at a frequency of ω = mωc. This frequency-dependent transport can be measured
using millimetre waves in resonant cavities.

In figure 5 we illustrate this by showing the time dependence of the real-space velocity
for quasiparticles orbiting the FS in equation (5) for ka = kb = 1. Since equation (5) defines
only the FS shape and provides no information about the band dispersion local to the FS, we
work in a linearized approximation, such that the magnitude of the real-space velocity remains

Figure 5. Orbits around the Fermi surface for ka = kb and for a range of n. The top row shows the
orbits in k-space; the middle row shows the time dependence of the velocity components along the
x- and y-directions as a function of time, measured in units of the cyclotron period T = 2π/ωc . The
lower panel shows the amplitude of the Fourier components of the real-space velocities of electrons
orbiting the Fermi pockets which controls the amplitude of cyclotron resonances atω = mωc . Only
odd harmonics are produced.
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constant over the FS. When n = 2 the orbit is circular and the real-space velocity contains
only the fundamental frequency. When n departs significantly from 2, odd higher harmonics
of the cyclotron frequency are produced in the real-space velocity which could couple to the
millimetre waves; even harmonics are suppressed by the symmetry of the orbit. A related
effect known as the Fermi surface traversal resonance (FTR) is produced for open electronic
orbits over quasi-one-dimensional sections of FS [35,38–40]. This is not a CR since no closed
orbit is involved. FTRs have been observed experimentally [41]. The effect described in this
paper has not yet been definitively observed (though there is a tantalizing indication of this
effect in Sr2RuO4 [42]), but experiments are currently under way in order to search for high
CR harmonics in FSs which depart significantly from pure circular or elliptical shapes.

5. Conclusions

In conclusion, we have proposed a new parametrization of the FS shape which is simple to
apply to real experimental data and provides additional information about the FS shape from
AMRO experiments. The FS shape is crucial in determining ground-state properties depending
on electron–electron interactions. This approach extends the applicability of AMRO as a tool
for fermiological studies.
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